Hybrid global search with enhanced INC MPPT under partial shading condition

The photovoltaic system is quickly emerging as a highly favored option among renewable energy sources. However, it faces several significant challenges, including variable solar irradiance, temperature, and partial shading. Unfortunately, conventional Maximum Power Point Trackers (MPPTs) cannot accu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-12, Vol.13 (1), p.22197-22197, Article 22197
Hauptverfasser: Zaki, Mohamed, Shahin, Ahmed, Eskender, Saad, Elsayes, Mohamed A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The photovoltaic system is quickly emerging as a highly favored option among renewable energy sources. However, it faces several significant challenges, including variable solar irradiance, temperature, and partial shading. Unfortunately, conventional Maximum Power Point Trackers (MPPTs) cannot accurately track partial shading. Artificial intelligence and optimization techniques have been proposed as alternatives, but they require extensive training and can take a long time to achieve maximum power point (MPP) under partial shading circumstances. In this paper, a dynamic and fast-moving method of MPP tracking is proposed for use under both uniform solar irradiance and partial shade. This method combines an enhanced incremental conductance (INC) algorithm with a global search algorithm that looks at how well solar cells work when partly shaded. Simulation investigations are performed to validate the method's applicability and ensure that it reaches the most accurate value of MPP with a short-tracking time of less than 0.2 s and a steady-state error of less than 0.3% of the PV power. The results confirm the efficacy of the suggested tracking method under uniform solar irradiance and partial shade.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-49528-w