Green and highly extraction of phenolic compounds and antioxidant capacity from kinkeliba (Combretum micranthum G. Don) by natural deep eutectic solvents (NADESs) using maceration, ultrasound-assisted extraction and homogenate-assisted extraction

Kinkeliba (C. micranthum) is a tropical plant widely used for its tremendous phytochemicals and biological activities. In the present study, three green carboxylic acid-based natural deep eutectic solvents (NADESs) were used to assess the extraction of phenolic compounds in terms of total phenolic c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal of chemistry 2022-05, Vol.15 (5), p.103752, Article 103752
Hauptverfasser: Zannou, Oscar, Pashazadeh, Hojjat, Ibrahim, Salam A., Koca, Ilkay, Galanakis, Charis M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kinkeliba (C. micranthum) is a tropical plant widely used for its tremendous phytochemicals and biological activities. In the present study, three green carboxylic acid-based natural deep eutectic solvents (NADESs) were used to assess the extraction of phenolic compounds in terms of total phenolic content (TPC), total flavonoid content (TFC), individual phenolic compounds and antioxidant capacity (DPPH and FRAP assays) from dried C. micranthum leaves. For the synthesis of NADESs choline chloride was used as hydrogen bond acceptors (HBA) in combination with lactic acid (ChLa), acetic acid (ChAa) and tartaric acid (ChTa) as hydrogen bond donors (HBDs). The conventional solvents including distilled water, pure methanol and pure ethanol were used for comparison. Three extraction methods including maceration extraction (ME), homogenate-assisted extraction (HAE) and ultrasound-assisted extraction (UAE) were tested to determine the best extraction conditions. The solvents combined with the extraction methods were successfully applied for the recovery of phenolic compounds from C. micranthum leaves. ChLa exhibited the highest performance giving the TPC (21.12 ± 0.13–23.62 ± 0.58 mg GAE/g, followed by ChAc (15.49 ± 0.13–18.85 ± 0.39 mg GAE/g), water (17.08 ± 0.32–18.13 ± 0.13 mg GAE/g), ChTa (14.49 ± 0.26–17.44 ± 0.19 mg GAE/g), methanol (7.46 ± 0.45–11.64 ± 0.32 mg GAE/g) and ethanol (2.88 ± 0.39–4.60 ± 0.39 mg GAE/g), respectively. For TFC, ChLa (4.38 ± 0.09–5.01 ± 0.09 mg ECE/g) was the most prominent solvent, followed by ChAc (2.84 ± 0.04–5.01 ± 0.36 mg ECE/g), methanol (1.93 ± 053–4.85 ± 0.04 mg ECE/g), ethanol (1.49 ± 0.36–4.16 ± 0.04 mg ECE/g), ChTa (1.09 ± 0.04–3.22 ± 0.13 mg ECE/g) and water (1.15 ± 0.04–1.37 ± 0.44 mg ECE/g), respectively. The acidic NADESs especially ChLa and ChAa exhibited the best efficiencies compared to the conventional solvents. Furthermore, UAE and HAE provided good extraction efficiency in a short extraction time (30 min) in terms of the TPC, TFC, individual phenolic compounds and the antioxidant capacity compared to ME which gave a similar yield with 12 h of extraction time. Principal component analysis (PCA) showed that C. micranthum extracts could clearly be discriminated in terms of phytochemical compounds and antioxidant capacity and UAE, HAE or ME combined with ChLa ChAc or ChTa were the best choices to higher extraction efficiency.
ISSN:1878-5352
1878-5379
DOI:10.1016/j.arabjc.2022.103752