A Cooperative Game Allocation Strategy for Wind-Solar-Pumped Storage-Hydrogen Multi-Stakeholder Energy System
To meet the construction demand of clean energy demonstration bases, a gain allocation strategy for the joint optimization operation of wind-solar-pumped storage-hydrogen multi-stakeholder energy system based on the cooperative game theory is proposed. In order to take into consideration the securit...
Gespeichert in:
Veröffentlicht in: | Shànghăi jiāotōng dàxué xuébào 2024-06, Vol.58 (6), p.872-880 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To meet the construction demand of clean energy demonstration bases, a gain allocation strategy for the joint optimization operation of wind-solar-pumped storage-hydrogen multi-stakeholder energy system based on the cooperative game theory is proposed. In order to take into consideration the security of system operation, evaluation indicators for the complementarity of on-grid output are constructed. The stakeholders of wind, solar, pumped storage, and power-to-hydrogen cooperate through the internal electricity transaction to construct a joint scheduling model with the optimization goal of maximizing the operation benefits. Then, the minimum cost remaining saving (MCRS) method in the cooperative game theory is applied to allocate the synergistic benefits based on the scheduling results. The simulation results of a 12-stakeholder wind-solar-pumped storage-hydrogen clean energy demonstration base show that each stakeholder can derive positive gains through joint operation, and the reservoir capacity of pumped |
---|---|
ISSN: | 1006-2467 |
DOI: | 10.16183/j.cnki.jsjtu.2022.531 |