Optimization of Selective Hydrometallurgical Tantalum Recovery from E‑Waste Using Zeolites

To protect future high-tech metal demand, a selective and efficient recovery method for tantalum from a tantalum-rich e-waste component sample was developed. Ultrasound-assisted digestion of the component sample was optimized, and the highest dissolution rate was achieved using a mixture of 8 mol/L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2024-04, Vol.9 (13), p.14947-14954
Hauptverfasser: Koskinen, Jutta, Frimodig, Janne, Samulinen, Mikko, Tiihonen, Antti, Siljanto, Jimi, Haukka, Matti, Väisänen, Ari
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To protect future high-tech metal demand, a selective and efficient recovery method for tantalum from a tantalum-rich e-waste component sample was developed. Ultrasound-assisted digestion of the component sample was optimized, and the highest dissolution rate was achieved using a mixture of 8 mol/L H2SO4 and HF at a temperature of 60 °C. The determined amount of tantalum was as high as 11 000 ± 1000 mg/kg, which results in a high potential for recyclable tantalum. The other major elements of this complex e-waste fraction were silicon, iron, aluminum, and tin. Efficient recovery of tantalum from the leachate was performed using the zeolite material ZSM-5. Extremely high selectivity and a recovery rate of over 98% were obtained. In terms of adsorption efficiency, selectivity, and durability of the material, optimal adsorption was obtained using the diluted sample at 0.5 mol/L of H2SO4. The adsorption capacity of ZSM-5 for tantalum was determined to be 10.5 ± 0.6 mg/g, and tantalum was selectively eluted with 1:4 diluted ethanolamine with a yield of 87.2 ± 1.5%.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.3c08907