Degradability, cytocompatibility, and osteogenesis of porous scaffolds of nanobredigite and PCL-PEG-PCL composite

Jun Hou,1 Donghui Fan,2 Lingming Zhao,2 Baoqin Yu,3 Jiacan Su,3 Jie Wei,2 Jung-Woog Shin4 1The First Affiliated Hospital of Anhui Medical University, Department of Oral and Maxillofacial Surgery, Hefei, 2Key Laboratory for Ultrafine Materials of Ministry of Education and The State Key Laboratory of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of nanomedicine 2016-07, Vol.2016 (default), p.3545-3555
Hauptverfasser: Hou J, Fan DH, Zhao LM, Yu BQ, Su JC, Wei J, Shin JW
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Jun Hou,1 Donghui Fan,2 Lingming Zhao,2 Baoqin Yu,3 Jiacan Su,3 Jie Wei,2 Jung-Woog Shin4 1The First Affiliated Hospital of Anhui Medical University, Department of Oral and Maxillofacial Surgery, Hefei, 2Key Laboratory for Ultrafine Materials of Ministry of Education and The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 3Department of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China; 4Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea Abstract: Biocomposite scaffolds were fabricated by incorporation of nanobredigite (n-BD) into the polymer of poly(ε-caprolactone)-poly(ethyleneglycol)-poly(ε-caprolactone) (PCL-PEG-PCL). The results revealed that the addition of n-BD into PCL-PEG-PCL significantly improved water absorption, compressive strength, and degradability of the scaffolds of n-BD/PCL-PEG-PCL composite (n-BPC) compared with PCL-PEG-PCL scaffolds alone. In addition, the proliferation and alkaline phosphatase activity of MG63 cells cultured on n-BPC scaffolds were obviously higher than that cultured on PCL-PEG-PCL scaffolds. Moreover, the results of the histological evaluation from the animal model revealed that the n-BPC scaffolds significantly improved new bone formation compared with the PCL-PEG-PCL scaffolds, indicating good osteogenesis. The n-BPC scaffolds with good biocompatibility could stimulate cell proliferation, differentiation, and bone tissue regeneration and would be an excellent candidate for bone defect repair. Keywords: nanobredigite, PCL-PEG-PCL, biocomposite scaffolds, degradability, osteo­genesis
ISSN:1178-2013