Oscillatory Shear Stress Induces Oxidative Stress via TLR4 Activation in Endothelial Cells

Background. Oscillatory shear stress (OSS) disrupts endothelial homeostasis and promotes oxidative stress, which can lead to atherosclerosis. In atherosclerotic lesions, Toll-like receptor 4 (TLR4) is highly expressed. However, the molecular mechanism by which TLR4 modulates oxidative changes and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediators of inflammation 2019-01, Vol.2019 (2019), p.1-13
Hauptverfasser: Gu, Yue, Gao, Xiaofei, Kong, Xiangquan, Wang, Feng, Wang, Zhimei, Zhang, Junjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background. Oscillatory shear stress (OSS) disrupts endothelial homeostasis and promotes oxidative stress, which can lead to atherosclerosis. In atherosclerotic lesions, Toll-like receptor 4 (TLR4) is highly expressed. However, the molecular mechanism by which TLR4 modulates oxidative changes and the cell signaling transudation upon OSS is yet to be determined. Methods and Results. Carotid artery constriction (CAC) surgery and a parallel-plate flow chamber were used to modulate shear stress. The results showed that OSS significantly increased the oxidative burden, and this was partly due to TLR4 activation. OSS activated NOX2 and had no significant influence to NOX1 or NOX4 in endothelial cells (ECs). OSS phosphorylated caveolin-1, promoted its binding with endothelial nitric oxide synthase (eNOS), and resulted in deactivation of eNOS. TLR4 inhibition restored levels of nitric oxide (NO) and superoxide dismutase (SOD) in OSS-exposed cells. Conclusion. TLR4 modulates OSS-induced oxidative stress by activating NOX2 and suppressing eNOS.
ISSN:0962-9351
1466-1861
DOI:10.1155/2019/7162976