An Empirical Mode Decomposition Fuzzy Forecast Model for Air Quality

Air quality has a significant influence on people's health. Severe air pollution can cause respiratory diseases, while good air quality is beneficial to physical and mental health. Therefore, the prediction of air quality is very important. Since the concentration data of air pollutants are tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2022-12, Vol.24 (12), p.1803
Hauptverfasser: Jiang, Wenxin, Zhu, Guochang, Shen, Yiyun, Xie, Qian, Ji, Min, Yu, Yongtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Air quality has a significant influence on people's health. Severe air pollution can cause respiratory diseases, while good air quality is beneficial to physical and mental health. Therefore, the prediction of air quality is very important. Since the concentration data of air pollutants are time series, their time characteristics should be considered in their prediction. However, the traditional neural network for time series prediction is limited by its own structure, which makes it very easy for it to fall into a local optimum during the training process. The empirical mode decomposition fuzzy forecast model for air quality, which is based on the extreme learning machine, is proposed in this paper. Empirical mode decomposition can analyze the changing trend of air quality well and obtain the changing trend of air quality under different time scales. According to the changing trend under different time scales, the extreme learning machine is used for fast training, and the corresponding prediction value is obtained. The adaptive fuzzy inference system is used for fitting to obtain the final air quality prediction result. The experimental results show that our model improves the accuracy of both short-term and long-term prediction by about 30% compared to other models, which indicates the remarkable efficacy of our approach. The research of this paper can provide the government with accurate future air quality information, which can take corresponding control measures in a targeted manner.
ISSN:1099-4300
1099-4300
DOI:10.3390/e24121803