Mass Biosynthesis of Coumestrol Derivatives and Their Isomers via Soybean Adventitious Root Cultivation in Bioreactors
Coumestrol (CMS) derivatives are unique compounds, which function as phytoalexins; they are derived from soybean roots, following abiotic and biotic stresses. As a phytoalexin, CMS forms a defense system that enables plants to maintain their viability. However, it is still challenging to achieve the...
Gespeichert in:
Veröffentlicht in: | Frontiers in plant science 2022-06, Vol.13, p.923163-923163 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coumestrol (CMS) derivatives are unique compounds, which function as phytoalexins; they are derived from soybean roots, following abiotic and biotic stresses. As a phytoalexin, CMS forms a defense system that enables plants to maintain their viability. However, it is still challenging to achieve the mass production of phytoalexins, which exhibit pharmacological values,
via
plant breeding. Here, the synthesis of CMS derivatives from the seedling, plant, and adventitious root (AR) of
Glycine max
were investigated under artificial light, as well as
via
a chemical elicitor treatment. In the presence of constant light, as well as under treatment with methyl jasmonate, the CMS monoglucoside (coumestrin; CMSN) and malonyl CMSN (M-CMSN) contents of the AR culture (4 weeks) increased drastically. The two CMS derivatives, CMSN and M-CMSN, were obtained as a mixture of isomers, which were identified
via
nuclear magnetic resonance analysis. These derivatives were also observed in a soybean plant that was grown on artificial soil (AS; 5 weeks) and a Petri dish (9 days) although in considerably lesser quantities than those observed in the AR culture. Compared with the two other media (AS and the Petri dish), the AR culture achieved the superior synthesis of CMSN and M-CMSN within a relatively short cultivation period ( |
---|---|
ISSN: | 1664-462X 1664-462X |
DOI: | 10.3389/fpls.2022.923163 |