A FRAMEWORK FOR MORPHOLOGICAL OPERATIONS USING COUNTER HARMONIC MEAN

In this article, we have a tendency to embrace a novel framework for learning morphological operations using counter-harmonic mean. It combines the conception of morphology with convolutional neural networks. Similarly, the elemental morphological operators of dilation and erosion, opening and closi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings on engineering sciences (Online) 2024-12, Vol.6 (4), p.995-1004
Hauptverfasser: Knezevic, Bojan Z., Jalic, Radovan, Erceg, Dragan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we have a tendency to embrace a novel framework for learning morphological operations using counter-harmonic mean. It combines the conception of morphology with convolutional neural networks. Similarly, the elemental morphological operators of dilation and erosion, opening and closing, as well as the more refined top-hat transform, for which we disclose a real-world application from the steel industry, are all subjected to a rigorous experimental validation. Our system learns about the structuring element and the operator's composition via online learning and stochastic gradient descent. It works effectively with massive datasets and in online environments.
ISSN:2620-2832
2683-4111
DOI:10.24874/PES06.04.012