Algebraic Inverses on Lie Algebra Comultiplications

In this note, we investigate algebraic loop structures and inverses of elements of a set of all homomorphisms of Lie algebras with a binary operation derived from a Lie algebra comultiplication. As a symmetry phenomenon, we show that if l ( 1 ) c and r ( 1 ) c are the left and right inverses of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2020-04, Vol.12 (4), p.565
1. Verfasser: Lee, Dae-Woong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note, we investigate algebraic loop structures and inverses of elements of a set of all homomorphisms of Lie algebras with a binary operation derived from a Lie algebra comultiplication. As a symmetry phenomenon, we show that if l ( 1 ) c and r ( 1 ) c are the left and right inverses of the identity 1 : L → L on a free graded Lie algebra L , respectively, based on the Lie algebra comultiplication ψ c : L → L ⊔ L , then we have l ( 1 ) = l ( 1 ) c and r ( 1 ) = r ( 1 ) c , where c : L → L ⊔ L is a commutator.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym12040565