Algebraic Inverses on Lie Algebra Comultiplications
In this note, we investigate algebraic loop structures and inverses of elements of a set of all homomorphisms of Lie algebras with a binary operation derived from a Lie algebra comultiplication. As a symmetry phenomenon, we show that if l ( 1 ) c and r ( 1 ) c are the left and right inverses of the...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2020-04, Vol.12 (4), p.565 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note, we investigate algebraic loop structures and inverses of elements of a set of all homomorphisms of Lie algebras with a binary operation derived from a Lie algebra comultiplication. As a symmetry phenomenon, we show that if l ( 1 ) c and r ( 1 ) c are the left and right inverses of the identity 1 : L → L on a free graded Lie algebra L , respectively, based on the Lie algebra comultiplication ψ c : L → L ⊔ L , then we have l ( 1 ) = l ( 1 ) c and r ( 1 ) = r ( 1 ) c , where c : L → L ⊔ L is a commutator. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym12040565 |