Evaluating the Effectiveness of COVID-19 Bluetooth-Based Smartphone Contact Tracing Applications
One of the strategies to control the spread of infectious diseases is based on the use of specialized applications for smartphones. These apps offer the possibility, once individuals are detected to be infected, to trace their previous contacts in order to test and detect new possibly-infected indiv...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2020-10, Vol.10 (20), p.7113 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the strategies to control the spread of infectious diseases is based on the use of specialized applications for smartphones. These apps offer the possibility, once individuals are detected to be infected, to trace their previous contacts in order to test and detect new possibly-infected individuals. This paper evaluates the effectiveness of recently developed contact tracing smartphone applications for COVID-19 that rely on Bluetooth to detect contacts. We study how these applications work in order to model the main aspects that can affect their performance: precision, utilization, tracing speed and implementation model (centralized vs. decentralized). Then, we propose an epidemic model to evaluate their efficiency in terms of controlling future outbreaks and the effort required (e.g., individuals quarantined). Our results show that smartphone contact tracing can only be effective when combined with other mild measures that can slightly reduce the reproductive number R0 (for example, social distancing). Furthermore, we have found that a centralized model is much more effective, requiring an application utilization percentage of about 50% to control an outbreak. On the contrary, a decentralized model would require a higher utilization to be effective. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10207113 |