Extension of KNTZ trick to non-rectangular representations

We claim that the recently discovered universal-matrix precursor for the F functions, which define the differential expansion of colored polynomials for twist and double braid knots, can be extended from rectangular to non-rectangular representations. This case is far more interesting, because it in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. B 2019-06, Vol.793, p.464-468
1. Verfasser: Morozov, A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We claim that the recently discovered universal-matrix precursor for the F functions, which define the differential expansion of colored polynomials for twist and double braid knots, can be extended from rectangular to non-rectangular representations. This case is far more interesting, because it involves multiplicities and associated mysterious gauge invariance of arborescent calculus. In this paper we make the very first step – reformulate in this form the previously known formulas for the simplest non-rectangular representations [r,1] and demonstrate their drastic simplification after this reformulation.
ISSN:0370-2693
1873-2445
DOI:10.1016/j.physletb.2019.05.016