Developing advanced techniques to reclaim existing end of service life (EoSL) bricks – An assessment of reuse technical viability
Structural bricks are highly durable building products. However, brickwork is mostly demolished long before the end of its technical service life; the majority are crushed to form aggregate or else landfilled. Urban mining and circular economy are stimulating interest in the potential to recover str...
Gespeichert in:
Veröffentlicht in: | Developments in the built environment 2020-05, Vol.2, p.100006, Article 100006 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Structural bricks are highly durable building products. However, brickwork is mostly demolished long before the end of its technical service life; the majority are crushed to form aggregate or else landfilled. Urban mining and circular economy are stimulating interest in the potential to recover structural products from end-of-service-life buildings for direct reuse. For brickwork, separating bricks from cement-based mortar, as opposed to lime-based mortar, without damage to bricks is a major barrier. This paper presents two advanced techniques based on saw-cutting and punching, to demonstrate the technical feasibility of brick reclamation. Compared to new bricks, reclaimed bricks have similar visual appearance and their compressive strength differs by −4.8% to +40%. Design formula for compressive strength of masonry in current codes can be applied to reclaimed bricks. The reclamation process achieves reclaim rate of over 95% and has significantly lower energy consumption, and carbon requirements ( |
---|---|
ISSN: | 2666-1659 2666-1659 |
DOI: | 10.1016/j.dibe.2020.100006 |