Implementation of an analytical formulation for LEMP to assess the lightning performance of a distribution line

This paper presents the implementation of an analytical formulation to calculate the lightning electromagnetic pulse (LEMP) assuming a current wave-shape linearly rising with flat top and a transmission Line (TL) return-stroke model. It also describes the development of the expressions for the image...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tecno - Lógicas (Instituto Tecnológico Metropolitano) 2018-08, Vol.21 (42), p.51-62
Hauptverfasser: Soto, Edison, Pérez, Ernesto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the implementation of an analytical formulation to calculate the lightning electromagnetic pulse (LEMP) assuming a current wave-shape linearly rising with flat top and a transmission Line (TL) return-stroke model. It also describes the development of the expressions for the image dipoles required to calculate the vertical electric field, the azimuthal magnetic field and, specially, the horizontal electric field. The expressions to calculate the contribution of source dipoles were detailed in a previous publication by other authors. The complete formulation is used to calculate electromagnetic fields and lightning-induced voltages on a typical overhead distribution line. The results were compared with traditional formulas to calculate the LEMP (such as Rubinstein’s) and to calculate induced voltages (such as Rusck’s) showing errors below 1%. If a more complex wave shape was used (such as Heidler’s), errors below 5% were found. Additionally, the formula was employed to calculate the flashover rate of a distribution line above a ground with infinite and finite conductivity. Errors less than 5% were found compared to the results obtained in the IEEE 1410 Standard. On the other hand, the computation time required to the assessment of an overhead line indirect lightning performance is reduced by half when the analytical formula is used.
ISSN:0123-7799
2256-5337
2256-5337
DOI:10.22430/22565337.778