Nested algebraic Bethe ansatz for orthogonal and symplectic open spin chains
We present a nested algebraic Bethe ansatz for one-dimensional so2n- and sp2n-symmetric open spin chains with diagonal boundary conditions. The monodromy matrix of these spin chains satisfies the defining relations on the extended twisted Yangians Xρ(so2n,so2nρ)tw and Xρ(sp2n,sp2nρ)tw, respectively....
Gespeichert in:
Veröffentlicht in: | Nuclear physics. B 2020-03, Vol.952, p.114909, Article 114909 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a nested algebraic Bethe ansatz for one-dimensional so2n- and sp2n-symmetric open spin chains with diagonal boundary conditions. The monodromy matrix of these spin chains satisfies the defining relations on the extended twisted Yangians Xρ(so2n,so2nρ)tw and Xρ(sp2n,sp2nρ)tw, respectively. We use a generalisation of the De Vega and Karowski approach allowing us to relate the spectral problem of so2n- or sp2n-symmetric open spin chain to that of gln-symmetric open spin chain studied by Belliard and Ragoucy. We explicitly derive the structure of Bethe vectors, their eigenvalues and the nested Bethe equations. We also provide a proof of Belliard and Ragoucy's trace formula for Bethe vectors of gln-symmetric open spin chains. |
---|---|
ISSN: | 0550-3213 1873-1562 |
DOI: | 10.1016/j.nuclphysb.2019.114909 |