Nested algebraic Bethe ansatz for orthogonal and symplectic open spin chains

We present a nested algebraic Bethe ansatz for one-dimensional so2n- and sp2n-symmetric open spin chains with diagonal boundary conditions. The monodromy matrix of these spin chains satisfies the defining relations on the extended twisted Yangians Xρ(so2n,so2nρ)tw and Xρ(sp2n,sp2nρ)tw, respectively....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear physics. B 2020-03, Vol.952, p.114909, Article 114909
Hauptverfasser: Gerrard, Allan, Regelskis, Vidas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a nested algebraic Bethe ansatz for one-dimensional so2n- and sp2n-symmetric open spin chains with diagonal boundary conditions. The monodromy matrix of these spin chains satisfies the defining relations on the extended twisted Yangians Xρ(so2n,so2nρ)tw and Xρ(sp2n,sp2nρ)tw, respectively. We use a generalisation of the De Vega and Karowski approach allowing us to relate the spectral problem of so2n- or sp2n-symmetric open spin chain to that of gln-symmetric open spin chain studied by Belliard and Ragoucy. We explicitly derive the structure of Bethe vectors, their eigenvalues and the nested Bethe equations. We also provide a proof of Belliard and Ragoucy's trace formula for Bethe vectors of gln-symmetric open spin chains.
ISSN:0550-3213
1873-1562
DOI:10.1016/j.nuclphysb.2019.114909