Parameter estimation of the Heston volatility model with jumps in the asset prices

The parametric estimation of stochastic differential equations (SDEs) has been the subject of intense studies already for several decades. The Heston model, for instance, is based on two coupled SDEs and is often used in financial mathematics for the dynamics of asset prices and their volatility. Ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometrics 2023-06, Vol.11 (2), p.1-26
1. Verfasser: Gruszka, Jarosław
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The parametric estimation of stochastic differential equations (SDEs) has been the subject of intense studies already for several decades. The Heston model, for instance, is based on two coupled SDEs and is often used in financial mathematics for the dynamics of asset prices and their volatility. Calibrating it to real data would be very useful in many practical scenarios. It is very challenging, however, since the volatility is not directly observable. In this paper, a complete estimation procedure of the Heston model without and with jumps in the asset prices is presented. Bayesian regression combined with the particle filtering method is used as the estimation framework. Within the framework, we propose a novel approach to handle jumps in order to neutralise their negative impact on the estimates of the key parameters of the model. An improvement in the sampling in the particle filtering method is discussed as well. Our analysis is supported by numerical simulations of the Heston model to investigate the performance of the estimators. In addition, a practical follow-along recipe is given to allow finding adequate estimates from any given data.
ISSN:2225-1146
2225-1146
DOI:10.3390/econometrics11020015