Support Vector Machines in Combinatorial Chemistry

The application of support vector machines (SVM) in a combinatorial drug design process was discussed. The SVM is a supervised machine learning technique that minimizes a bound on the expected generalization error by minimizing the composite error. A structure-activity relationship (SAR) analysis wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement and control (London) 2001-10, Vol.34 (8), p.235-239
Hauptverfasser: Trotter, Matthew W B, Buxton, Bernard F, Holden, Sean B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The application of support vector machines (SVM) in a combinatorial drug design process was discussed. The SVM is a supervised machine learning technique that minimizes a bound on the expected generalization error by minimizing the composite error. A structure-activity relationship (SAR) analysis was performed in the drug discovery process to classify the suitability of the new molecular combinations. The SVM outperformed four frequently used techniques in a trial on data provided by GlaxoSmithKline Pharmaceuticals where it showed a high accuracy in classifying the more important of the two compound classes.
ISSN:0020-2940
DOI:10.1177/002029400103400803