Structural Attention Enhanced Continual Meta-Learning for Graph Edge Labeling Based Few-Shot Remote Sensing Scene Classification

Scene classification is one of the fundamental techniques shared by many basic remote sensing tasks with a wide range of applications. As the demands of catering with situations under high variance in the data urgent conditions are rising, a research topic called few-shot scene classification is rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2022-01, Vol.14 (3), p.485
Hauptverfasser: Li, Feimo, Li, Shuaibo, Fan, Xinxin, Li, Xiong, Chang, Hongxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Scene classification is one of the fundamental techniques shared by many basic remote sensing tasks with a wide range of applications. As the demands of catering with situations under high variance in the data urgent conditions are rising, a research topic called few-shot scene classification is receiving more interest with a focus on building classification model from few training samples. Currently, methods using the meta-learning principle or graphical models are achieving state-of-art performances. However, there are still significant gaps in between the few-shot methods and the traditionally trained ones, as there are implicit data isolations in standard meta-learning procedure and less-flexibility in the static graph neural network modeling technique, which largely limit the data-to-knowledge transition efficiency. To address these issues, this paper proposed an novel few-shot scene classification algorithm based on a different meta-learning principle called continual meta-learning, which enhances the inter-task correlation by fusing more historical prior knowledge from a sequence of tasks within sections of meta-training or meta-testing periods. Moreover, as to increase the discriminative power between classes, a graph transformer is introduced to produce the structural attention, which can optimize the distribution of sample features in the embedded space and promotes the overall classification capability of the model. The advantages of our proposed algorithm are verified by comparing with nine state-of-art meta-learning based on few-shot scene classification on three popular datasets, where a minimum of a 9% increase in accuracy can be observed. Furthermore, the efficiency of the newly added modular modifications have also be verified by comparing to the continual meta-learning baseline.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14030485