The forecasting of dynamical Ross River virus outbreaks: Victoria, Australia
•A network approach to forecasting mosquito-borne diseases.•Development of a Ross River virus Outbreak Surveillance System.•Decision-support tool to guide public health.•Epidemiology understanding of Ross River virus transmission in temperate regions. Ross River virus (RRV) is Australia’s most epide...
Gespeichert in:
Veröffentlicht in: | Epidemics 2020-03, Vol.30, p.100377, Article 100377 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •A network approach to forecasting mosquito-borne diseases.•Development of a Ross River virus Outbreak Surveillance System.•Decision-support tool to guide public health.•Epidemiology understanding of Ross River virus transmission in temperate regions.
Ross River virus (RRV) is Australia’s most epidemiologically important mosquito-borne disease. During RRV epidemics in the State of Victoria (such as 2010/11 and 2016/17) notifications can account for up to 30% of national RRV notifications. However, little is known about factors which can forecast RRV transmission in Victoria. We aimed to understand factors associated with RRV transmission in epidemiologically important regions of Victoria and establish an early warning forecast system. We developed negative binomial regression models to forecast human RRV notifications across 11 Local Government Areas (LGAs) using climatic, environmental, and oceanographic variables. Data were collected from July 2008 to June 2018. Data from July 2008 to June 2012 were used as a training data set, while July 2012 to June 2018 were used as a testing data set. Evapotranspiration and precipitation were found to be common factors for forecasting RRV notifications across sites. Several site-specific factors were also important in forecasting RRV notifications which varied between LGA. From the 11 LGAs examined, nine experienced an outbreak in 2011/12 of which the models for these sites were a good fit. All 11 LGAs experienced an outbreak in 2016/17, however only six LGAs could predict the outbreak using the same model. We document similarities and differences in factors useful for forecasting RRV notifications across Victoria and demonstrate that readily available and inexpensive climate and environmental data can be used to predict epidemic periods in some areas. Furthermore, we highlight in certain regions the complexity of RRV transmission where additional epidemiological information is needed to accurately predict RRV activity. Our findings have been applied to produce a Ross River virus Outbreak Surveillance System (ROSS) to aid in public health decision making in Victoria. |
---|---|
ISSN: | 1755-4365 1878-0067 |
DOI: | 10.1016/j.epidem.2019.100377 |