Local search enhanced optimal Inception-ResNet-v2 for classification of long-term lung diseases in post-COVID-19 patients

The Coronavirus disease (COVID-19) has emerged as a global epidemic, posing a significant threat to countries worldwide. COVID-19 is closely associated with pneumonia, leading to the unfortunate loss of many lives due to pulmonary conditions. Differentiating between pneumonia and COVID-19 based on c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatika 2024-04, Vol.65 (2), p.473-482
Hauptverfasser: Sanampudi, Anusha, Srinivasan, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Coronavirus disease (COVID-19) has emerged as a global epidemic, posing a significant threat to countries worldwide. COVID-19 is closely associated with pneumonia, leading to the unfortunate loss of many lives due to pulmonary conditions. Differentiating between pneumonia and COVID-19 based on chest X-ray images has become a challenging task. This paper proposes a Local Search Enhanced AHO-based Inception-ResNet-v2 Model to develop a robust and accurate classification model for identifying and categorizing chronic lung diseases in patients who have recovered from COVID-19. The proposed model utilizes the Inception-ResNet-v2 architecture to extract features from CT scan images, which are then used to classify the lung diseases present in the patients. A curated dataset of CT scan images from post-COVID-19 patients with known lung disease classes is used to train the model. Experimental results demonstrate that the proposed method achieves an accuracy of 98.97%, precision of 98.95%, sensitivity of 98.91%, F-score of 98.86%, and specificity of 98.89%. These performance metrics are comparable to those achieved by methods based on manually delineated contaminated areas.
ISSN:0005-1144
1848-3380
DOI:10.1080/00051144.2023.2295142