Summer sea ice floe perimeter density in the Arctic: high-resolution optical satellite imagery and model evaluation

Size distribution of sea ice floes is an important component for sea ice thermodynamic and dynamic processes, particularly in the marginal ice zone. Recently processes related to the floe size distribution (FSD) have been incorporated into sea ice models, but the sparsity of existing observations li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The cryosphere 2023-08, Vol.17 (8), p.3575-3591
Hauptverfasser: Wang, Yanan, Hwang, Byongjun, Bateson, Adam William, Aksenov, Yevgeny, Horvat, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Size distribution of sea ice floes is an important component for sea ice thermodynamic and dynamic processes, particularly in the marginal ice zone. Recently processes related to the floe size distribution (FSD) have been incorporated into sea ice models, but the sparsity of existing observations limits the evaluation of FSD models, thus hindering model improvements. In this study, perimeter density has been applied to characterise the floe size distribution for evaluating three FSD models – the Waves-in-Ice module and Power law Floe Size Distribution (WIPoFSD) model and two branches of a fully prognostic floe size-thickness distribution model: CPOM-FSD and FSDv2-WAVE. These models are evaluated against a new FSD dataset derived from high-resolution satellite imagery in the Arctic. The evaluation shows an overall overestimation of floe perimeter density by the models against the observations. Comparison of the floe perimeter density distribution with the observations shows that the models exhibit a much larger proportion for small floes (radius 30–50 m). Observations and the WIPoFSD model both show a negative correlation between sea ice concentration and the floe perimeter density, but the two prognostic models (CPOM-FSD and FSDv2-WAVE) show the opposite pattern. These differences between models and the observations may be attributed to limitations in the observations (e.g. the image resolution is not sufficient to detect small floes) or limitations in the model parameterisations, including the use of a global power-law exponent in the WIPoFSD model as well as too weak a floe welding and enhanced wave fracture in the prognostic models.
ISSN:1994-0424
1994-0416
1994-0424
1994-0416
DOI:10.5194/tc-17-3575-2023