Environmental DNA Particle Size Distribution and Quantity Differ Across Taxa and Organelles
ABSTRACT The use of environmental DNA to detect species is now widespread in freshwater ecology. However, the detectability of species depends on many factors, such as the quantity of eDNA particles available in the environment and their state (e.g., free DNA fragments, organellar, or aggregated DNA...
Gespeichert in:
Veröffentlicht in: | Environmental DNA (Hoboken, N.J.) N.J.), 2024-09, Vol.6 (5), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
The use of environmental DNA to detect species is now widespread in freshwater ecology. However, the detectability of species depends on many factors, such as the quantity of eDNA particles available in the environment and their state (e.g., free DNA fragments, organellar, or aggregated DNA particles). To date, the most advanced knowledge of the production and state of DNA particles concerns teleosts. Most often, these studies target mitochondrial genes, since they are present in multiple copies in a cell. However, it is likely that the characteristics of eDNA molecules vary greatly among taxa and genetic compartments, with direct consequences for species detection. Using an indoor mesocosm experiment, we compared the rate of mitochondrial and nuclear eDNA production and particle size distribution (PSD) of four distinct and common aquatic taxa (zebrafish, tadpole, isopod and mollusk). The tank water was filtered through a series of filters with decreasing porosity and mitochondrial and nuclear eDNA at each size fraction were quantified by qPCR. We found that the production and the size of eDNA particles varied greatly among taxa and genetic compartments. For most taxa, the number of nuclear eDNA particles released in water was higher than that of mitochondrial origin. The PSD of mt‐eDNA showed a pattern common to all taxa: the relative number of particles increased from the smallest size fractions (0.2 μm and less) to the largest (over 1.2 μm), while the distribution of nu‐eDNA was very different from one taxon to another. We also observed a high temporal variability in the quantity of eDNA particles and in PSD, although the latter was more complex to model. These results call for caution in how to sample and analyze eDNA in aquatic environments, particularly for organisms that emit small particles in small quantities such as isopods. |
---|---|
ISSN: | 2637-4943 2637-4943 |
DOI: | 10.1002/edn3.598 |