A Reformulated-Vortex-Particle-Method-Based Aerodynamic Multi-Objective Design Optimization Strategy for Proprotor in Hover and High-Altitude Cruise
An improved multi-objective design optimization framework is proposed for the efficient design of proprotor blades tailored to specific high-altitude mission requirements. This framework builds upon existing methods by leveraging a reformulated Vortex Particle Method (rVPM) and incorporates three ke...
Gespeichert in:
Veröffentlicht in: | Aerospace 2024-11, Vol.11 (11), p.906 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An improved multi-objective design optimization framework is proposed for the efficient design of proprotor blades tailored to specific high-altitude mission requirements. This framework builds upon existing methods by leveraging a reformulated Vortex Particle Method (rVPM) and incorporates three key stages: (1) rapid determination of overall proprotor parameters using a semi-empirical model, (2) optimized blade chord and twist distribution bounds based on minimum energy loss theory, and (3) global optimization with a high-fidelity rVPM-based aerodynamic solver coupled with a multi-objective hybrid optimization algorithm. Applied to a small high-altitude tiltrotor, the framework produced Pareto-optimal proprotor designs with a figure of merit of 0.814 and cruise efficiency of 0.896, exceeding mission targets by over 15%. Key findings indicate that large taper ratios and low twist improve hover performance, while elliptical blade planforms with high twist enhance cruise efficiency, and a tip anhedral further boosts overall performance. This framework streamlines the industrial customization of proprotor blades, significantly reducing the design space for advanced optimization while improving performance in demanding high-altitude environments. |
---|---|
ISSN: | 2226-4310 2226-4310 |
DOI: | 10.3390/aerospace11110906 |