On-Line EIS Measurement for High-Power Fuel Cell Systems Using Simulink Real-Time

Impedance measurements by EIS are used to build a physical circuit-based model that enables various fault diagnostics and lifetime predictions. These research areas are becoming increasingly crucial for the safety and preventive maintenance of fuel cell power systems. It is challenging to apply the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2021-10, Vol.14 (19), p.6133
Hauptverfasser: Han, Soo-Bin, Oh, Hwanyeong, Lee, Won-Yong, Won, Jinyeon, Chae, Suyong, Baek, Jongbok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Impedance measurements by EIS are used to build a physical circuit-based model that enables various fault diagnostics and lifetime predictions. These research areas are becoming increasingly crucial for the safety and preventive maintenance of fuel cell power systems. It is challenging to apply the impedance measurement up to commercial applications at the field level. Although EIS technology has been widely used to measure and analyze the characteristics of fuel cells, EIS is applicable mainly at the single-cell level. In the case of stacks constituting a power generation system in the field, it is difficult to apply EIS due to various limitations in the high-power condition with uncontrollable loads. In this paper, we present a technology that can measure EIS on-line by injecting the perturbation current to fuel cell systems operating in the field. The proposed EIS method is developed based on Simulink Real-Time so that it can be applied to embedded devices. Modeling and simulation of the proposed method are presented, and the procedures from the simulation in virtual space to the real-time application to physical systems are described in detail. Finally, actual usefulness is shown through experiments using two physical systems, an impedance hardware simulator and a fuel cell stack with practical considerations.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14196133