Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold

Regulations currently in force enable to claim that the lead content in perovskite solar cells is low enough to be safe, or no more dangerous, than other electronics also containing lead. However, the actual environmental impact of lead from perovskite is unknown. Here we show that the lead from per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-01, Vol.11 (1), p.310-5, Article 310
Hauptverfasser: Li, Junming, Cao, Hai-Lei, Jiao, Wen-Bin, Wang, Qiong, Wei, Mingdeng, Cantone, Irene, Lü, Jian, Abate, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Regulations currently in force enable to claim that the lead content in perovskite solar cells is low enough to be safe, or no more dangerous, than other electronics also containing lead. However, the actual environmental impact of lead from perovskite is unknown. Here we show that the lead from perovskite leaking into the ground can enter plants, and consequently the food cycle, ten times more effectively than other lead contaminants already present as the result of the human activities. We further demonstrate that replacing lead with tin represents an environmentally-safer option. Our data suggest that we need to treat the lead from perovskite with exceptional care. In particular, we point out that the safety level for lead content in perovskite-based needs to be lower than other lead-containing electronics. We encourage replacing lead completely with more inert metals to deliver safe perovskite technologies. Halide perovskites are promising for next generation photovoltaic technology but their environmental impact has not been fully evaluated. Here Li et al. show that the lead from perovskites is ten times more dangerous than lead-containing electronics while tin perovskites are much less bioavailable.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-13910-y