Comparing Multi-level and Ordinary Logistic Regression Models in Evaluating Factors Related to Periodontal Clinical Attachment Loss

Background and Objectives: Periodontal disease is one of the most common oral health problems. Clinical attachment loss occurs in sever periodontal cases (CAL>3). In this study, we applied a classic regression model and the models that consider the hierarchical structure of the data to estimate a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian journal of epidemiology 2019-03, Vol.14 (4), p.359-365
Hauptverfasser: S Dehghani, A Abadi, M Namdari, Z Ghorbani
Format: Artikel
Sprache:per
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background and Objectives: Periodontal disease is one of the most common oral health problems. Clinical attachment loss occurs in sever periodontal cases (CAL>3). In this study, we applied a classic regression model and the models that consider the hierarchical structure of the data to estimate and compare the effect of different factors on CAL.   Methods: This cross-sectional study was performed in 375 pregnant women and 192 mothers of three-year-old children. The data were gathered from 16 health networks of Shahid Beheshti University of Medical Sciences, Tehran, Iran. CAL was determined for 6 teeth per person by a dentist according to WHO standard oral health examination form. Three-level and ordinary logistic regression analyses were applied for data analysis using the STATA software 14.   Results: Of 3,402 examined teeth, 6.3% had CAL> 3mm. Based on the obtained results, the odds of CAL>3mm were 2.4 in the third semester compared to non-pregnant women. The odds of CAL>3mm were 2.86 in women without daily floss use compared to women with routine daily floss use. Posterior teeth were more likely to have CAL>3m than anterior teeth (OR = 1.65) (P-value < 0.05).   Conclusion: According to the AIC index, multi-level logistic regression model has a better fit than ordinary logistic regression model and can estimate the coefficients of factors related to CAL>3mm more precisely. The use of the ordinary logistic regression model in hierarchical data can result in underestimated standard errors of the estimated parameters.
ISSN:1735-7489
1735-7489