Aerosol particle number concentration, ultrafine particle number fraction, and new particle formation measurements near the international airports in Berlin, Germany – First results from the BEAR study
[Display omitted] •Long-term variability of PNC at multiple schools near two airports is investigated.•With a decreasing proximity to an airfield, the PNC concentrations increases.•The road-traffic emissions are important source of PNC measured at schools.•Regional NPF had an observable influence on...
Gespeichert in:
Veröffentlicht in: | Environment international 2024-11, Vol.193, p.109086, Article 109086 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•Long-term variability of PNC at multiple schools near two airports is investigated.•With a decreasing proximity to an airfield, the PNC concentrations increases.•The road-traffic emissions are important source of PNC measured at schools.•Regional NPF had an observable influence on UFP-nf and number concentration.•After airport closure, the PNC in surrounding areas decreased by 30 %.
Studies revealed airports as a prominent source of ultrafine particles (UFP), which can disperse downwind to residential areas, raising health concerns. To expand our understanding of how air traffic-related emissions influence total particle number concentration (PNC) in the airport’s surrounding areas, we conduct long-term assessment of airborne particulate exposure before and after relocation of air traffic from “Otto Lilienthal” Airport (TXL) to Berlin Brandenburg Airport “Willy Brandt” (BER) in Berlin, Germany. Here, we provide insights into the spatial–temporal variability of PNC measured in 16 schools recruited for Berlin-Brandenburg Air Study (BEAR).
The results show that the average PNC in Berlin was 7900 ± 7000 cm−3, consistent with other European cities. The highest median PNC was recorded in spring (6700 cm−3) and the lowest in winter (5100 cm−3). PNC showed a bi-modal increase during morning and evening hours at most measurement sites due to road-traffic emissions. A comparison between measurements at the schools and fixed monitoring sites revealed good agreement at distances up to 5 km. A noticeable decline in this agreement occurred as the distance between measurement sites increased. After TXL was closed, PNC in surrounding areas decreased by 30 %. The opposite trend was not seen after BER was re-opened after the COVID-lock-down, as the air traffic has not reached the full capacity yet. The analysis of particle number size distribution data showed that UFP number fraction exhibit seasonal variations, with higher values in spring and autumn. This can be explained by nucleation events, which notably affected PNC.
The presented findings will play a pivotal role in forthcoming source attribution and epidemiological investigations, offering a holistic understanding of airports’ impact on airborne pollutant levels and their health implications. The study calls for further investigations of air-traffic-related physical–chemical pollutant properties in areas found further away (> 10 km) from airports. |
---|---|
ISSN: | 0160-4120 1873-6750 1873-6750 |
DOI: | 10.1016/j.envint.2024.109086 |