Clinical trial protocol for PanDox: a phase I study of targeted chemotherapy delivery to non-resectable primary pancreatic tumours using thermosensitive liposomal doxorubicin (ThermoDox®) and focused ultrasound

The dense stroma of pancreatic ductal adenocarcinomas is a major barrier to drug delivery. To increase the local drug diffusion gradient, high doses of chemotherapeutic agent doxorubicin can be released from thermally-sensitive liposomes (ThermoDox®) using ultrasound-mediated hyperthermia at the tum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC cancer 2023-09, Vol.23 (1), p.896-896, Article 896
Hauptverfasser: Spiers, Laura, Gray, Michael, Lyon, Paul, Sivakumar, Shivan, Bekkali, Noor, Scott, Shaun, Collins, Linda, Carlisle, Robert, Wu, Feng, Middleton, Mark, Coussios, Constantin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dense stroma of pancreatic ductal adenocarcinomas is a major barrier to drug delivery. To increase the local drug diffusion gradient, high doses of chemotherapeutic agent doxorubicin can be released from thermally-sensitive liposomes (ThermoDox®) using ultrasound-mediated hyperthermia at the tumour target. PanDox is designed as a Phase 1 single centre study to investigate enhancing drug delivery to adult patients with non-operable pancreatic ductal adenocarcinomas. The study compares a single cycle of either conventional doxorubicin alone or ThermoDox® with focused ultrasound-induced hyperthermia for targeted drug release. Adults with non-resectable pancreatic ductal adenocarcinoma are allocated to receive a single cycle of either doxorubicin alone (Arm A) or ThermoDox® with focused ultrasound-induced hyperthermia (Arm B), based on patient- and tumour-specific safety conditions. Participants in Arm B will undergo a general anaesthetic and pre-heating of the tumour by extra-corporal focused ultrasound (FUS). Rather than employing invasive thermometry, ultrasound parameters are derived from a patient-specific treatment planning model to reach the 41 °C target temperature for drug release. ThermoDox® is then concurrently infused with further ultrasound exposure. Tumour biopsies at the targeted site from all patients are analysed post-treatment using high performance liquid chromatography to quantify doxorubicin delivered to the tumour. The primary endpoint is defined as a statistically significant enhancement in concentration of total intra-tumoural doxorubicin, comparing samples from patients receiving liposomal drug with FUS to free drug alone. Participants are followed for 21 days post-treatment to assess secondary endpoints, including radiological assessment to measure changes in tumour activity by Positron Emission Tomography Response Criteria in Solid Tumours (PERCIST) criteria, adverse events and patient-reported symptoms. This early phase study builds on previous work targeting tumours in the liver to investigate whether enhancement of chemotherapy delivery using ultrasound-mediated hyperthermia can be translated to the stroma-dense environment of pancreatic ductal adenocarcinoma. If successful, it could herald a new approach towards managing these difficult-to-treat tumours. ClinicalTrials.gov Identifier: NCT04852367 . Registered 21 April 2022. EudraCT number: 2019-003950-10 (Registered 2019) Iras Project ID: 272253 (Registered 2019) Ethics Numbe
ISSN:1471-2407
1471-2407
DOI:10.1186/s12885-023-11228-z