Scan-less microscopy based on acousto-optic encoded illumination

Several optical microscopy methods are now available for characterizing scientific and industrial processes at sub-micron resolution. However, they are often ill-suited for imaging rapid events. Limited by the trade-off between camera frame-rate and sensitivity, or the need for mechanical scanning,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanophotonics (Berlin, Germany) Germany), 2024-01, Vol.13 (1), p.63-73
Hauptverfasser: Marchese, Andrea, Ricci, Pietro, Saggau, Peter, Duocastella, Martí
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several optical microscopy methods are now available for characterizing scientific and industrial processes at sub-micron resolution. However, they are often ill-suited for imaging rapid events. Limited by the trade-off between camera frame-rate and sensitivity, or the need for mechanical scanning, current microscopes are optimized for imaging at hundreds of frames-per-second (fps), well-below what is needed in processes such as neuronal signaling or moving parts in manufacturing lines. Here, we present a scan-less technology that allows sub-micrometric imaging at thousands of fps. It is based on combining a single-pixel camera with parallelized encoded illumination. We use two acousto-optic deflectors (AODs) placed in a Mach–Zehnder interferometer and drive them simultaneously with multiple and unique acoustic frequencies. As a result, orthogonal light stripes are obtained that interfere with the sample plane, forming a two-dimensional array of flickering spots – each with its modulation frequency. The light from the sample is collected with a single photodiode that, after spectrum analysis, allows for image reconstruction at speeds only limited by the AOD’s bandwidth and laser power. We describe the working principle of our approach, characterize its imaging performance as a function of the number of pixels – up to 400 × 400 – and characterize dynamic events at 5000 fps.
ISSN:2192-8606
2192-8614
2192-8614
DOI:10.1515/nanoph-2023-0616