Rapid intensification and the bimodal distribution of tropical cyclone intensity

The severity of a tropical cyclone (TC) is often summarized by its lifetime maximum intensity (LMI), and the climatological LMI distribution is a fundamental feature of the climate system. The distinctive bimodality of the LMI distribution means that major storms (LMI >96 kt) are not very rare co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2016-02, Vol.7 (1), p.10625-10625, Article 10625
Hauptverfasser: Lee, Chia-Ying, Tippett, Michael K., Sobel, Adam H., Camargo, Suzana J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The severity of a tropical cyclone (TC) is often summarized by its lifetime maximum intensity (LMI), and the climatological LMI distribution is a fundamental feature of the climate system. The distinctive bimodality of the LMI distribution means that major storms (LMI >96 kt) are not very rare compared with less intense storms. Rapid intensification (RI) is the dramatic strengthening of a TC in a short time, and is notoriously difficult to forecast or simulate. Here we show that the bimodality of the LMI distribution reflects two types of storms: those that undergo RI during their lifetime (RI storms) and those that do not (non-RI storms). The vast majority (79%) of major storms are RI storms. Few non-RI storms (6%) become major storms. While the importance of RI has been recognized in weather forecasting, our results demonstrate that RI also plays a crucial role in the TC climatology. Tropical cyclones rarely achieve high intensities gradually. Here, the authors show that rapid intensification is relevant not only to short-term weather forecasting, but also to the relationship between tropical cyclones and climate.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms10625