Using ensemble data assimilation to forecast hydrological flumes

Data assimilation, commonly used in weather forecasting, means combining a mathematical forecast of a target dynamical system with simultaneous measurements from that system in an optimal fashion. We demonstrate the benefits obtainable from data assimilation with a dam break flume simulation in whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear processes in geophysics 2013-11, Vol.20 (6), p.955-964
Hauptverfasser: Amour, I, Mussa, Z, Bibov, A, Kauranne, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data assimilation, commonly used in weather forecasting, means combining a mathematical forecast of a target dynamical system with simultaneous measurements from that system in an optimal fashion. We demonstrate the benefits obtainable from data assimilation with a dam break flume simulation in which a shallow-water equation model is complemented with wave meter measurements. Data assimilation is conducted with a Variational Ensemble Kalman Filter (VEnKF) algorithm. The resulting dynamical analysis of the flume displays turbulent behavior, features prominent hydraulic jumps and avoids many numerical artifacts present in a pure simulation.
ISSN:1607-7946
1023-5809
1607-7946
DOI:10.5194/npg-20-955-2013