The Catalytic Performance of CO Oxidation over MnOx-ZrO2 Catalysts: The Role of Synthetic Routes

MnOx-ZrO2 catalysts prepared by co-precipitation and vacuum impregnation were calcined at 400–800 °C and characterized by powder X-ray diffraction, textural studies, high-resolution transmission electron microscopy, temperature-programmed reduction, X-ray absorption near edge structure, and X-ray ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2023-01, Vol.13 (1), p.57
Hauptverfasser: Bulavchenko, Olga A., Konovalova, Valeriya P., Saraev, Andrey A., Kremneva, Anna M., Rogov, Vladimir A., Gerasimov, Evgeny Yu, Afonasenko, Tatyana N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MnOx-ZrO2 catalysts prepared by co-precipitation and vacuum impregnation were calcined at 400–800 °C and characterized by powder X-ray diffraction, textural studies, high-resolution transmission electron microscopy, temperature-programmed reduction, X-ray absorption near edge structure, and X-ray photoelectron spectroscopy. The catalytic activity was tested in the CO oxidation reaction. The activity of the co-precipitated samples exceeds that of the catalysts prepared by vacuum impregnation. The characterization studies showed that the nature of the active component for the catalysts obtained by co-precipitation differs from that of the catalysts obtained by impregnation. In the impregnation series, the most active catalyst was obtained at a temperature of 400 °C; its increased activity is due to the formation of MnO2 oxide nanoparticles containing Mn4+ and low-temperature reducibility. An increase in the synthesis temperature leads to the formation of less active Mn2O3, catalyst sintering, and, accordingly, deterioration of the catalytic properties. In the case of co-precipitation, the most active CO oxidation catalysts are formed by calcination at 650–700 °C in air. In this temperature interval, on the one hand, a MnyZr1−yO2−x solid solution is formed, and on the other hand, a partial separation of mixed oxide begins with the formation of highly dispersed and active MnOx. A further increase in temperature to 800 °C leads to complete decomposition of the solid solution, the release of manganese cations into Mn3O4, and a drop in catalytic activity.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal13010057