Sensitivity Enhancement of Silicon-on-Insulator CMOS MEMS Thermal Hot-Film Flow Sensors by Minimizing Membrane Conductive Heat Losses

Minimizing conductive heat losses in Micro-Electro-Mechanical-Systems (MEMS) thermal (hot-film) flow sensors is the key to minimize the sensors' power consumption and maximize their sensitivity. Through a comprehensive review of literature on MEMS thermal (calorimetric, time of flight, hot-film...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2019-04, Vol.19 (8), p.1860
Hauptverfasser: Mehmood, Zahid, Haneef, Ibraheem, Ali, Syed Zeeshan, Udrea, Florin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Minimizing conductive heat losses in Micro-Electro-Mechanical-Systems (MEMS) thermal (hot-film) flow sensors is the key to minimize the sensors' power consumption and maximize their sensitivity. Through a comprehensive review of literature on MEMS thermal (calorimetric, time of flight, hot-film/hot-film) flow sensors published during the last two decades, we establish that for curtailing conductive heat losses in the sensors, researchers have either used low thermal conductivity substrate materials or, as a more effective solution, created low thermal conductivity membranes under the heaters/hot-films. However, no systematic experimental study exists that investigates the effect of membrane shape, membrane size, heater/hot-film length and M e m b r a n e (size) to H e a t e r (hot-film length) ( ) on sensors' conductive heat losses. Therefore, in this paper we have provided experimental evidence of dependence of conductive heat losses in membrane based MEMS hot-film flow sensors on by using eight MEMS hot-film flow sensors, fabricated in a 1 µm silicon-on-insulator (SOI) CMOS foundry, that are thermally isolated by square and circular membranes. Experimental results demonstrate that: (a) thermal resistance of both square and circular membrane hot-film sensors increases with increasing , and (b) conduction losses in square membrane based hot-film flow sensors are lower than the sensors having circular membrane. The difference (or gain) in thermal resistance of square membrane hot-film flow sensors viz-a-viz the sensors on circular membrane, however, decreases with increasing . At = 2, this difference is 5.2%, which reduces to 3.0% and 2.6% at = 3 and = 4, respectively. The study establishes that for membrane based SOI CMOS MEMS hot-film sensors, the optimum is 3.35 for square membranes and 3.30 for circular membranes, beyond which the gain in sensors' thermal efficiency (thermal resistance) is not economical due to the associated sharp increase in the sensors' (membrane) size, which makes sensors more expensive as well as fragile. This paper hence, provides a key guideline to MEMS researchers for designing the square and circular membranes-supported micro-machined thermal (hot-film) flow sensors that are thermally most-efficient, mechanically robust and economically viable.
ISSN:1424-8220
1424-8220
DOI:10.3390/s19081860