A Novel Modular Multiport Converter for Enhancing the Performance of Photovoltaic-Battery Based Power Systems
This paper introduces a novel multiport power converter with modular architecture for photovoltaic (PV)-battery based power systems. Compared to conventional centralized multiport converters, the proposed converter significantly improves the utilization of PV available energy and battery capacity as...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2019-10, Vol.9 (19), p.3948 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper introduces a novel multiport power converter with modular architecture for photovoltaic (PV)-battery based power systems. Compared to conventional centralized multiport converters, the proposed converter significantly improves the utilization of PV available energy and battery capacity as it does not require a high number of series-connected PV and battery modules. The proposed converter also eliminates the need for additional battery cell/module equalizer circuitry by being able to implement directly energy management strategies that consider the different capabilities of battery modules to ensure charge/stress balancing. This makes it a promising solution for interfacing second-life batteries or for systems that utilize batteries with a high degree of mismatch. The modularity of the proposed converter enhances system reliability and fault tolerance and reduces the power/voltage ratings of the power electronic devices. The converter modes of operation, control strategy and design considerations are discussed. A 75 V/1 kW integrated PV-battery power system prototype is built and tested to validate the concept. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app9193948 |