Diversification of plant SUPPRESSOR OF MAX2 1 (SMAX1)-like genes and genome-wide identification and characterization of cotton SMXL gene family

Strigolactones (SLs) are a recently discovered class of plant hormones. SUPPRESSOR OF MAX2 1 (SMAX1)-like proteins, key component of the SL signaling pathway, have been studied extensively for their roles in regulating plant growth and development, such as plant branching. However, systematic identi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC plant biology 2023-09, Vol.23 (1), p.419-419, Article 419
Hauptverfasser: Ma, Bin, Zhu, Jianbo, Huang, Xianzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Strigolactones (SLs) are a recently discovered class of plant hormones. SUPPRESSOR OF MAX2 1 (SMAX1)-like proteins, key component of the SL signaling pathway, have been studied extensively for their roles in regulating plant growth and development, such as plant branching. However, systematic identification and functional characterization of SMXL genes in cotton (Gossypium sp.), an important fiber and oil crop, has rarely been conducted. We identified 210 SMXL genes from 21 plant genomes and examined their evolutionary relationships. The structural characteristics of the SMXL genes and their encoded proteins exhibited both consistency and diversity. All plant SMXL proteins possess a conserved Clp-N domain, P-loop NTPase, and EAR motif. We identified 63 SMXL genes in cotton and classified these into four evolutionary branches. Gene expression analysis revealed tissue-specific expression patterns of GhSMXL genes, with some upregulated in response to GR24 treatment. Protein co-expression network analysis showed that GhSMXL6, GhSMXL7-1, and GhSMXL7-2 mainly interact with proteins functioning in growth and development, while virus-induced gene silencing revealed that GhSMAX1-1 and GhSMAX1-2 suppress the growth and development of axillary buds. SMXL gene family members show evolutionary diversification through the green plant lineage. GhSMXL6/7-1/7-2 genes play critical roles in the SL signaling pathway, while GhSMXL1-1 and GhSMXL1-2 function redundantly in growth of axillary buds. Characterization of the cotton SMXL gene family provides new insights into their roles in responding to SL signals and in plant growth and development. Genes identified in this study could be used as the candidate genes for improvement of plant architecture and crop yield.
ISSN:1471-2229
1471-2229
DOI:10.1186/s12870-023-04421-6