BABEL: using deep learning to translate between single-cell datasets
Recent advances in sequencing and barcoding technologies have enabled researchers to simultaneously profile gene expression, chromatin accessibility, and/or protein levels in single cells. However, these multiomic techniques often pose technical and financial barriers that limit their practicality....
Gespeichert in:
Veröffentlicht in: | Communications biology 2021-05, Vol.4 (1), p.591-591, Article 591 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent advances in sequencing and barcoding technologies have enabled researchers to simultaneously profile gene expression, chromatin accessibility, and/or protein levels in single cells. However, these multiomic techniques often pose technical and financial barriers that limit their practicality. Kevin Wu and colleagues recently developed BABEL, a deep learning algorithm that can effectively translate between transcriptomic and chromatin profiles in single cells, thereby enabling researchers to perform multiomic analyses from an individual dataset. |
---|---|
ISSN: | 2399-3642 2399-3642 |
DOI: | 10.1038/s42003-021-02135-9 |