BABEL: using deep learning to translate between single-cell datasets

Recent advances in sequencing and barcoding technologies have enabled researchers to simultaneously profile gene expression, chromatin accessibility, and/or protein levels in single cells. However, these multiomic techniques often pose technical and financial barriers that limit their practicality....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2021-05, Vol.4 (1), p.591-591, Article 591
1. Verfasser: Inglis, George Andrew S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent advances in sequencing and barcoding technologies have enabled researchers to simultaneously profile gene expression, chromatin accessibility, and/or protein levels in single cells. However, these multiomic techniques often pose technical and financial barriers that limit their practicality. Kevin Wu and colleagues recently developed BABEL, a deep learning algorithm that can effectively translate between transcriptomic and chromatin profiles in single cells, thereby enabling researchers to perform multiomic analyses from an individual dataset.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-021-02135-9