Prediction of Aroma Partitioning Using Machine Learning

Intensive research in the field over the past decades highlighted the complexity of aroma partition. Still, no general model for predicting aroma matrix interactions could be described. The vision outlined here is to discover the blueprint for the prediction of aroma partitioning behavior in complex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering proceedings 2023-07, Vol.37 (1), p.48
Hauptverfasser: Marvin Anker, Christian Krupitzer, Yanyan Zhang, Christine Borsum
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intensive research in the field over the past decades highlighted the complexity of aroma partition. Still, no general model for predicting aroma matrix interactions could be described. The vision outlined here is to discover the blueprint for the prediction of aroma partitioning behavior in complex foods by using machine learning techniques. Therefore, known physical relationships governing aroma release are combined with machine learning to predict the Kmg value of aroma compounds in foods of different compositions. The approach will be optimized on a data set of a specific food product. Afterward, the model should be transferred using explainable artificial intelligence (XAI) to a different food category to validate its applicability. Furthermore, we can transfer our approach to other relevant questions in the food field such as aroma quantification, extraction processes, or food spoilage.
ISSN:2673-4591
DOI:10.3390/ECP2023-14707