Quantifying the Colonization of Environmental Microbes in the Fish Gut: A Case Study of Wild Fish Populations in the Yangtze River

In aquatic animals, gut microbial communities shift with host development and living environments. Understanding the mechanism by which the environment impacts the gut microbial communities of aquatic animals is crucial for assessing and managing aquatic ecosystem health. Here, we proposed a simplif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in microbiology 2022-02, Vol.12, p.828409-828409
Hauptverfasser: Yang, Haile, Wu, Jinming, Du, Hao, Zhang, Hui, Li, Junyi, Wei, Qiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In aquatic animals, gut microbial communities shift with host development and living environments. Understanding the mechanism by which the environment impacts the gut microbial communities of aquatic animals is crucial for assessing and managing aquatic ecosystem health. Here, we proposed a simplified framework for the colonization and dynamics of gut microbial communities. Then, to quantify the colonization of environmental microbes in the wild fish gut, the current study used 16S rRNA gene amplicon sequencing to obtain the structure of the water environmental microbial community and the gut microbial community in 10 wild fish populations ( , , , , , , , , , and ) from the Wuhan section of the Yangtze River, and the relationship of these microbial communities was analyzed. The results identified that in most individuals, approximately 80% of gut microbes [at the operational taxonomic unit (OTU) level] were shared with the water environmental microbial community (except for individuals of and , approximately 74%). In approximately 80% of individuals, more than 95% of microbial species (OTUs) in the gut were transient. For fish species, more than 99% of microbial species (OTUs) that were introduced into the gut were transient. Nearly 79% of OTUs and 89% of species of water environmental microbes could be introduced into the fish gut. Driven by the introduction of transient microbes, fishes with similar feeding habits had similar gut microbial communities. The results indicated that for adult wild fishes, most gut microbiota were transient from the environmental microbiota that were related to fish feeding habits. We therefore encourage future research to focus on environmental microbiota monitoring and management to promote the better conservation of aquatic animals. It was important to note that, because of various influence factors, interspecific differences and individual variations on gut microbial community characteristics, the quantification of gut microbes in the current work was approximate rather than accurate. We hope that more comparable research could be conducted to outline the quantitative characteristics of the relationship between gut microbial community and aquatic environment microbial community as soon as possible.
ISSN:1664-302X
1664-302X
DOI:10.3389/fmicb.2021.828409