Weighted sharing of meromorphic functions concerning certain type of linear difference polynomials

In this research article, with the help of Nevanlinna theory we study the uniqueness problems of transcendental meromorphic functions having finite order in the complex plane $\mathbb{C}$, of the form is given by $\phi^{n}(z)\sum_{j=1}^{d}a_{j}\phi(z+c_{j})$ and $\psi^{n}(z)\sum_{j=1}^{d}a_{j}\psi(z...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ratio mathematica 2023-12, Vol.48
Hauptverfasser: Megha M. Manakame, Harina P Waghamore
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this research article, with the help of Nevanlinna theory we study the uniqueness problems of transcendental meromorphic functions having finite order in the complex plane $\mathbb{C}$, of the form is given by $\phi^{n}(z)\sum_{j=1}^{d}a_{j}\phi(z+c_{j})$ and $\psi^{n}(z)\sum_{j=1}^{d}a_{j}\psi(z+c_{j})$ where $L(z,\phi)=\sum_{j=1}^{d}a_{j}\phi(z+c_{j})$ which share a non-zero polynomial $p(z)$ with finite weight. By considering the concept of weighted sharing introduced by I. Lahiri (Complex Variables and Elliptic equations,2001,241-253), we investigate difference polynomials for the cases $(0,2),(0,1),(0,0)$. Our new findings extends and generalizes some classical results of Sujoy Majumder\cite{m11}. Some examples have been exhibited which are relevant to the content of the paper.
ISSN:1592-7415
2282-8214
DOI:10.23755/rm.v48i0.1206