Metabolomics and computational analysis of the role of monoamine oxidase activity in delirium and SARS-COV-2 infection

Delirium is an acute change in attention and cognition occurring in ~ 65% of severe SARS-CoV-2 cases. It is also common following surgery and an indicator of brain vulnerability and risk for the development of dementia. In this work we analyzed the underlying role of metabolism in delirium-susceptib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-05, Vol.11 (1), p.10629-14, Article 10629
Hauptverfasser: Cuperlovic-Culf, Miroslava, Cunningham, Emma L., Teimoorinia, Hossen, Surendra, Anuradha, Pan, Xiaobei, Bennett, Steffany A. L., Jung, Mijin, McGuiness, Bernadette, Passmore, Anthony Peter, Beverland, David, Green, Brian D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Delirium is an acute change in attention and cognition occurring in ~ 65% of severe SARS-CoV-2 cases. It is also common following surgery and an indicator of brain vulnerability and risk for the development of dementia. In this work we analyzed the underlying role of metabolism in delirium-susceptibility in the postoperative setting using metabolomic profiling of cerebrospinal fluid and blood taken from the same patients prior to planned orthopaedic surgery. Distance correlation analysis and Random Forest (RF) feature selection were used to determine changes in metabolic networks. We found significant concentration differences in several amino acids, acylcarnitines and polyamines linking delirium-prone patients to known factors in Alzheimer’s disease such as monoamine oxidase B (MAOB) protein. Subsequent computational structural comparison between MAOB and angiotensin converting enzyme 2 as well as protein–protein docking analysis showed that there potentially is strong binding of SARS-CoV-2 spike protein to MAOB. The possibility that SARS-CoV-2 influences MAOB activity leading to the observed neurological and platelet-based complications of SARS-CoV-2 infection requires further investigation.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-90243-1