Acid-Catalyzed Condensation of Benzamide with Glyoxal, and Reaction Features
Scholars from around the world have been attempting to simplify and cheapen the synthetic method for the promising high-energy compound CL-20 for decades. The lack of understanding of the formation mechanisms of hexaazaisowurtzitane derivatives-CL-20 precursors-is a barrier to solving the said probl...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2022-02, Vol.27 (3), p.1094 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Scholars from around the world have been attempting to simplify and cheapen the synthetic method for the promising high-energy compound CL-20 for decades. The lack of understanding of the formation mechanisms of hexaazaisowurtzitane derivatives-CL-20 precursors-is a barrier to solving the said problems. Here, we report the results from an in-depth study into the acid-catalyzed condensation between benzamide and glyoxal in a molar ratio of 2:1 in polar protic and aprotic solvents. Sixteen compounds were isolated and identified, of which eight were synthesized for the first time. A geminal diol,
,
'-(2,2-dihydroxyethane-1,1-diyl)dibenzamide, was synthesized. Two isomers of 1,2-bis(benzoylamino)-1,2-ethanediol were isolated and identified.
,
'-(1-oxoethane-1,2-diyl)dibenzamide and 2-oxo-2-[(phenylcarbonyl)amino]ethyl benzoate were produced that were likely formed due to the 1,2-hydride shift.
-polysubstituted 1,4-dioxane-2,3,5,6-tetramine was synthesized for the first time, whose structure may be of interest as a scaffold for new explosives. DMSO, THF and HCOOH were found to be able to engage in a reaction with benzamide, or condensation products thereof, and glyoxal under acid-catalyzed conditions. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules27031094 |