The Effect of Eaves Types to Wind Pressures on 45° Pitched Gable Roofs
In this study, flow field around a low-rise building model with 45º pitched gable roof having different eave types has been investigated experimentally in order to search the wind loads that can damage the building roofs. The experiments were carried out in an atmospheric boundary layer that is mod...
Gespeichert in:
Veröffentlicht in: | Uludağ University Journal of The Faculty of Engineering 2016-03, Vol.21 (1), p.45-62 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, flow field around a low-rise building model with 45º pitched gable roof having different eave types has been investigated experimentally in order to search the wind loads that can damage the building roofs. The experiments were carried out in an atmospheric boundary layer that is modeled in the wind tunnel. Atmospheric boundary layer was simulated with combination of barrier, elliptic vortex generators and elements of roughness and a 150 mm height boundary layer was formed at 15 m/s wind velocity. The mean and fluctuating surface pressures were measured on the roofs having different eave types in detail for various wind directions to observe critical suction zones on the roof surfaces. It is seen that eaves increase suction loads on the roof corners. Usage of a special eave causes more critical peak pressures on the roof corners compared with normal eave and without eave cases. |
---|---|
ISSN: | 2148-4147 2148-4155 |
DOI: | 10.17482/uujfe.64036 |