Insight into the effects of H2SO4 and HNO3 acidification processes on the properties of coal as an enhanced adsorbent for ciprofloxacin residuals: Steric and energetic studies

A sub-bituminous natural coal sample (R.C) was treated with sulfuric acid (S.C) and nitric acid (N.C) as modified products and enhanced adsorbents for obtaining ciprofloxacin (CFX) antibiotic residuals from water. The characterization studied demonstrates enhancement in the surface area and the inco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in chemistry 2023-03, Vol.11, p.1130682-1130682
Hauptverfasser: Al-Labadi, Ibrahim G., Shemy, Marwa H., Ghidan, Alaa Y., Allam, Ahmed A., Kálmán, Horváth M., Ajarem, Jamaan S., Luo, Jianmin, Wang, Chuanyi, Abukhadra, Mostafa R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A sub-bituminous natural coal sample (R.C) was treated with sulfuric acid (S.C) and nitric acid (N.C) as modified products and enhanced adsorbents for obtaining ciprofloxacin (CFX) antibiotic residuals from water. The characterization studied demonstrates enhancement in the surface area and the incorporation of new active oxygenated, sulfur-bearing, and nitrogen-bearing chemical groups into the structure of coal samples. This was reflected in the adsorption capacities that were enhanced from 164.08 mg/g (R.C) to 489.2 mg/g and 518.5 mg/g for N.C and S.C, respectively. The impact of the acid modification processes was evaluated based on the energetic and steric properties of their adsorption systems considering the parameters of the advanced monolayer equilibrium model with one energy site. The determined occupied active sites’ density of R.C (46.32–61.44 mg/g), N.C (168.7–364.9 mg/g), and S.C (159.2–249.9 mg/g) reflects an increase in the quantities of active centers after the acid treatment processes, especially with HNO 3 . The higher efficiencies of the active sites of S.C to adsorb more CFX molecules ( n = 2.08–2.31) than N.C ( n = 1.41–2.16) illustrate its higher adsorption capacity. The energetic investigation [adsorption (˂40 kJ/mol) and Gaussian (˂8 kJ/mol) energies] suggested adsorption of CFX by N.C and S.C mainly by physical processes such as van der Waals forces, hydrogen bonding, dipole bonding, and π–π interactions. Moreover, the determined thermodynamic functions including entropy, internal energy, and free enthalpy reflect the spontaneous and endothermic uptake of CFX on the surfaces of N.C and S.C.
ISSN:2296-2646
2296-2646
DOI:10.3389/fchem.2023.1130682