Combination of Cross- and Inter-Band Radiometric Calibrations for a Hyperspectral Sensor Using Model-Based Spectral Band Adjustment

Recently, the growing number of hyperspectral satellite sensors have increased the demand for a flexible and robust approach to their calibration. This paper proposes an operational method for the simultaneous correction of inter-sensor and inter-band biases in hyperspectral sensors via the soil lin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2020-06, Vol.12 (12), p.2011
Hauptverfasser: Mizuochi, Hiroki, Tsuchida, Satoshi, Obata, Kenta, Yamamoto, Hirokazu, Yamamoto, Satoru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, the growing number of hyperspectral satellite sensors have increased the demand for a flexible and robust approach to their calibration. This paper proposes an operational method for the simultaneous correction of inter-sensor and inter-band biases in hyperspectral sensors via the soil line concept for spectral band adjustment. Earth Observing-1 Hyperion was selected as an example, with the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) as a reference. The results over the Railroad Valley Playa calibration site indicated that the discrepancy in the analogous bands between Hyperion and MODIS during 2001–2008 was approximately 4–6% and 7–9% of the root-mean-square error in the top-of-atmosphere (TOA) radiance at the visible and near-infrared region and shortwave infrared region, respectively. For all Hyperion bands, the relative cross-calibration coefficients during this period were calculated (typically ranging from 0.9 to 1.1) to correct the Hyperion TOA radiance to be consistent with the MODIS and the other Hyperion bands. The application of the proposed approach could allow for more flexible cross-calibration of irregular-orbit sensors aboard the International Space Station.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs12122011