Vectorcardiographic Ventricular Gradient with Constituents, and Myocardial Action Potential Parameter Distribution

Theoretical grounds of integral vectors of ventricular depolarization and repolarization and their sum, i.e., the spatial ventricular gradient, have been studied. A systematic description and biophysical interpretation of these parameters are presented based on the distribution of cardiomyocyte acti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science review 2022-02, Vol.22 (1), p.44-49
Hauptverfasser: Aidu, Eduard A. I., Trunov, Vladimir G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Theoretical grounds of integral vectors of ventricular depolarization and repolarization and their sum, i.e., the spatial ventricular gradient, have been studied. A systematic description and biophysical interpretation of these parameters are presented based on the distribution of cardiomyocyte action potential parameters in the inhomogeneous bidomain model of the myocardium. Recent medical studies have shown high efficiency and predictive value of the ventricular gradient, its constituents and related parameters, such as the angle between the con-stituents, the acceleration of repolarization, etc. Simple examples for a myocardial strip clarify the relationship between the action potential parameters and the resulting ventricular gradient. An explanation with graphic illustration is given for the very informative decartogram of repolarization acceleration. The results obtained here are useful in the modeling of vectorcardiograms for various pathological conditions of the heart ventricles and for various characteristics of the cardiomyocyte action potential, which determine its shape.
ISSN:1335-8871
1335-8871
DOI:10.2478/msr-2022-0005