Controlled Metric Type Spaces and the Related Contraction Principle

In this article, we introduce a new extension of b-metric spaces, called controlled metric type spaces, by employing a control function α ( x , y ) of the right-hand side of the b-triangle inequality. Namely, the triangle inequality in the new defined extension will have the form, d ( x , y ) ≤ α (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2018-10, Vol.6 (10), p.194
Hauptverfasser: Mlaiki, Nabil, Aydi, Hassen, Souayah, Nizar, Abdeljawad, Thabet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we introduce a new extension of b-metric spaces, called controlled metric type spaces, by employing a control function α ( x , y ) of the right-hand side of the b-triangle inequality. Namely, the triangle inequality in the new defined extension will have the form, d ( x , y ) ≤ α ( x , z ) d ( x , z ) + α ( z , y ) d ( z , y ) , f o r a l l x , y , z ∈ X . Examples of controlled metric type spaces that are not extended b-metric spaces in the sense of Kamran et al. are given to show that our extension is different. A Banach contraction principle on controlled metric type spaces and an example are given to illustrate the usefulness of the structure of the new extension.
ISSN:2227-7390
2227-7390
DOI:10.3390/math6100194