Controlled Metric Type Spaces and the Related Contraction Principle
In this article, we introduce a new extension of b-metric spaces, called controlled metric type spaces, by employing a control function α ( x , y ) of the right-hand side of the b-triangle inequality. Namely, the triangle inequality in the new defined extension will have the form, d ( x , y ) ≤ α (...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2018-10, Vol.6 (10), p.194 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we introduce a new extension of b-metric spaces, called controlled metric type spaces, by employing a control function α ( x , y ) of the right-hand side of the b-triangle inequality. Namely, the triangle inequality in the new defined extension will have the form, d ( x , y ) ≤ α ( x , z ) d ( x , z ) + α ( z , y ) d ( z , y ) , f o r a l l x , y , z ∈ X . Examples of controlled metric type spaces that are not extended b-metric spaces in the sense of Kamran et al. are given to show that our extension is different. A Banach contraction principle on controlled metric type spaces and an example are given to illustrate the usefulness of the structure of the new extension. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math6100194 |