CsxWO3@NBs as a Multi-Image Guided Photothermal/Photodynamic Combination Therapy Platform for the Treatment of Hepatocellular Carcinoma

Purpose: Effective cancer treatment relies on the precise deployment of clinical imaging techniques to accurately treat tumors. One highly representative technology among these is multi-imaging guided phototherapy. This work introduces a new and innovative theranostic drug that combines near-infrare...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of nanomedicine 2024-01, Vol.19, p.13375-13389
Hauptverfasser: Wang, C, Wang, X, Tian, Y, Tian, H, Chen, Y, Wu B, Cheng, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: Effective cancer treatment relies on the precise deployment of clinical imaging techniques to accurately treat tumors. One highly representative technology among these is multi-imaging guided phototherapy. This work introduces a new and innovative theranostic drug that combines near-infrared (NIR) irradiation-induced photodynamic therapy (PDT) and photothermal therapy (PTT) to treat malignancies. Moreover, it can be utilized as a contrasting substance for X-ray computed tomography (CT) imaging and contrast-enhanced ultrasound (CEUS) to aid in the administration of therapy.Methods: Cesium tungsten bronze nanobubbles (CsxWO3@NBs) were constructed via a water-controlled solvothermal synthesis and thin film hydration of phospholipid. Various methods, including dynamic light scattering, transmission electron microscopy, and X-ray photoelectron spectroscopy, were used to analyze and describe the size, shape, and chemical characteristics of the nanoparticles. In this study, hepatoma cell lines HepG2 and HUH7 were employed in vitro, and xenotransplantation mouse models were used to assess their antitumor effects. A series of in vitro and in vivo trials were conducted to assess the effectiveness of combining photodynamic and photothermal therapies, as well as using CEUS and CT imaging.Results: The CsxWO3@NBs exhibit photothermal effects and the generation of reactive oxygen species (ROS) under laser irradiation, thereby enabling effective photothermal and photodynamic combinatorial therapy. Following combined treatment, the activity and invasive capacity of hepatocellular carcinoma cells were markedly diminished, the development rate of the tumor was noticeably reduced, and the level of biological toxicity was low. Additionally, CsxWO3@NBs possess the capacity to serve as both a CT imaging agent and a contrast-enhanced ultrasound agent.Conclusion: CsxWO3@NBs represent a promising theranostic agent for image-guided cancer therapy.
ISSN:1176-9114
1178-2013
1178-2013
DOI:10.2147/IJN.S484694