NMR shift prediction from small data quantities
Prediction of chemical shift in NMR using machine learning methods is typically done with the maximum amount of data available to achieve the best results. In some cases, such large amounts of data are not available, e.g. for heteronuclei. We demonstrate a novel machine learning model that is able t...
Gespeichert in:
Veröffentlicht in: | Journal of cheminformatics 2023-11, Vol.15 (1), p.114-114, Article 114 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Prediction of chemical shift in NMR using machine learning methods is typically done with the maximum amount of data available to achieve the best results. In some cases, such large amounts of data are not available, e.g. for heteronuclei. We demonstrate a novel machine learning model that is able to achieve better results than other models for relevant datasets with comparatively low amounts of data. We show this by predicting
19
F
and
13
C
NMR chemical shifts of small molecules in specific solvents.
Graphical Abstract |
---|---|
ISSN: | 1758-2946 1758-2946 |
DOI: | 10.1186/s13321-023-00785-x |