NMR shift prediction from small data quantities

Prediction of chemical shift in NMR using machine learning methods is typically done with the maximum amount of data available to achieve the best results. In some cases, such large amounts of data are not available, e.g. for heteronuclei. We demonstrate a novel machine learning model that is able t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cheminformatics 2023-11, Vol.15 (1), p.114-114, Article 114
Hauptverfasser: Rull, Herman, Fischer, Markus, Kuhn, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prediction of chemical shift in NMR using machine learning methods is typically done with the maximum amount of data available to achieve the best results. In some cases, such large amounts of data are not available, e.g. for heteronuclei. We demonstrate a novel machine learning model that is able to achieve better results than other models for relevant datasets with comparatively low amounts of data. We show this by predicting 19 F and 13 C NMR chemical shifts of small molecules in specific solvents. Graphical Abstract
ISSN:1758-2946
1758-2946
DOI:10.1186/s13321-023-00785-x