Coseismic displacement waveforms for the 2016 August 24 Mw 6.0 Amatrice earthquake (central Italy) carried out from High-Rate GPS data
We used High-Rate sampling Global Positioning System (HRGPS) data from 52 permanent stations to retrieve the coseismic dynamic displacements related to the 2016 August 24 Mw 6.0 Amatrice earthquake. The HRGPS position time series (named hereinafter "GPSgrams") were obtained with two differ...
Gespeichert in:
Veröffentlicht in: | Annals of geophysics 2016-01, Vol.59 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We used High-Rate sampling Global Positioning System (HRGPS) data from 52 permanent stations to retrieve the coseismic dynamic displacements related to the 2016 August 24 Mw 6.0 Amatrice earthquake. The HRGPS position time series (named hereinafter "GPSgrams") were obtained with two different analysis strategies of the raw GPS measurements (Precise Point Positioning [PPP] and Double-Difference [DD] positioning approaches using the Gipsy-Oasis II and the TRACK (GAMIT/GLOBK) software, respectively). These GPSgrams show RMS accuracies mostly within 0.3 cm and, for each site, an agreement within 0.5 cm between the two solutions. By using cross-correlation technique, the GPSgrams are also compared to the doubly-integrated strong motion data at sites where the different instrumentations are co-located in order to recognize in the GPSgrams the seismic waves movements. The high values (mostly greater than 0.6) of the cross-correlation functions between these differently-generated waveforms (GPSgrams and the SM displacement time-histories) at the co-located sites confirm the ability of GPS in providing reliable waveforms for seismological applications. |
---|---|
ISSN: | 1593-5213 2037-416X |
DOI: | 10.4401/ag-7275 |