The Effect of Anakinra on Acrylamide-induced Peripheral Neuropathy and Neuropathic Pain in Rats
Abstract Acrylamide is a neurotoxic compound. Moreover, anakinra is an interleukin-1 (IL-1) receptor antagonist used in rheumatoid arthritis treatment. This study investigated the effect of anakinra on acrylamide-related neuropathy and neuropathic pain. Acrylamide exposure caused a significant decre...
Gespeichert in:
Veröffentlicht in: | Brazilian Journal of Pharmaceutical Sciences 2022-01, Vol.58 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Acrylamide is a neurotoxic compound. Moreover, anakinra is an interleukin-1 (IL-1) receptor antagonist used in rheumatoid arthritis treatment. This study investigated the effect of anakinra on acrylamide-related neuropathy and neuropathic pain. Acrylamide exposure caused a significant decrease in the pain threshold; an increase in malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β) levels; and a decrease in total glutathione (tGSH) values in the sciatic nerve. This indicates hyperalgesia presence, oxidative stress, and peripheral nerve tissue inflammation. Anakinra treatment significantly reduced the MDA, IL-1β, and TNF-α levels, and increased the pain threshold and mean tGSH values. The analgesic effect of anakinra was 67.9% at the first hour, increasing to 74.9% and 76.7% at the second and third hours, respectively. The group receiving acrylamide exhibited histopathological changes (e.g., swollen and degenerated axons, hypertrophic and hyperplasic Schwann cells, and congested vessels). The use of anakinra significantly improved these morphological changes. Anakinra is concluded to reduce neuropathic pain and prevent neurotoxic effect of acrylamide on peripheral nerves due to its analgesic, antioxidant, and anti-inflammatory properties. |
---|---|
ISSN: | 2175-9790 2175-9790 |
DOI: | 10.1590/s2175-97902022e21010 |